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In this paper an efficient sequential method is developed in order to estimate the unknown boundary
condition on the surface of a body from transient temperature measurements inside the solid. This
numerical approach for solving an inverse heat conduction problem (IHCP) takes into account two-
dimensional problems, planar or axisymmetric cylindrical, composite materials with irregular boundaries
and temperature-dependent thermal properties. The unknown surface condition is assumed to have
abrupt changes at unknown times. The regularization procedure used for the solution of the IHCP is based
on the singular value decomposition technique. An overall estimate of error is defined in order to find
the optimal estimation in the 2D IHCP (linear and non-linear). The stability and accuracy of the scheme
presented is evaluated by comparison with the Function Specification Method. This comparative study
has been carried out using numerically simulated data, and the parameters considered include shape
of input, noise level of measurement, size of time step and temperature-dependent thermal properties.
A good agreement was found between both methods. Beside this, the slight differences on estimations
and number of future temperatures are discussed in this paper.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

Several functions and parameters can be estimated from the
inverse heat conduction problem (IHCP): static and moving heat-
ing sources, material properties, initial conditions, boundary condi-
tions, etc. This study is confined to the estimation of an unknown
boundary condition. The unknown function can be a surface flux,
a surface temperature or a heat transfer coefficient. The lack of in-
formation is usually due to the difficulty of installing sensors in
the boundary. This circumstance appears in applications where the
boundary is inaccessible [1,2], in simulation of space vehicle re-
entry [3], in metallurgic applications [4,5], etc. In order to recover
the unknown time history, it is necessary to obtain the additional
information provided by remote temperature sensors placed at in-
terior locations.

It is well known that the IHCP is an ill-posed problem because
small errors in the data might induce large errors in the computed
solution. As a consequence of the diffusive nature of heat flow, the
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thermal response at some distance of the boundary is damped and
lagged with respect to the active input at the boundary. This im-
plies that in many cases the inverse problem presents a low or
insufficient sensitivity. On the other hand, in linear problems the
relationship between the thermal response and the unknown in-
put can be expressed through a sensitivity matrix which tends to
be quasi-singular. This fact explains the principal difficulty of the
IHCP: the estimation tends to be unstable due to the great ampli-
fication of measurements errors. This difficulty is increased when
the time interval between measurements is reduced. The influence
of the most important factors in this problem can be discussed
considering the exact solution of Burggraf [6]. For this reason, spe-
cial techniques are needed in order to restore stability. Moreover,
the numerical difficulties increase substantially with the dimen-
sionality and the non-linearity of the inverse problem. Thus, an
efficient as well as reliable method is essential for it to be applica-
ble to real-world problems.

Fortunately, many methods have been reported to solve IHCPs.
Among the most versatile methods (applicable to solve multidi-
mensional and non-linear IHCP), the following can be mentioned:
Tikhonov regularization [7], iterative regularization [8], mollifica-
tion [9], and the function specification method (FSM) [6]. The first
two methods are usually considered as “whole domain” because
all measured temperature data are used in order to simultaneously
estimate all the components of the unknown input. By contrast,
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Nomenclature

C constant
c specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg ◦C
H partition of sensitivity matrix
h heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . W/m2 ◦C
J number of temperature sensors

k thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . W/m ◦C
M total number of time steps
m present time step
N number of estimated values during τ
n inwards normal vector
P number of spatial heat flux parameters
p reduced rank
q heat flux vector
q heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

r number of future time steps and cylindrical
coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

S diagonal matrix
S overall estimate of error . . . . . . . . . . . . . . . . . . . . . . . . W/m2

s surface coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
T vector of calculated temperatures
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U orthogonal matrix
u left singular vector
u Gaussian random numbers (normalized)
V orthogonal matrix
v right singular vector
X sensitivity matrix
Y vector of measured temperatures
Y measured temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C

z cylindrical coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

Γ boundary
�t time step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
�φ response to a unit pulse . . . . . . . . . . . . . . . . . . . . ◦C/W m−2

ε random error
λ singular value
φ response to a unit step change . . . . . . . . . . . . . ◦C/W m−2

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σ standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
τ temporal interval
Φ basis function
Ω domain

Subscripts

0 initial value
fut future components
i time index
j sensor index
k parameter index
past previous components
r in direction of r-axis
red reduced rank approximation
z in direction of z-axis

Superscripts

T transposed
∧ estimated
∗ arbitrary
the last two methods are sequential and hence, only a little part of
available measurement is used in each step and only one compo-
nent of the unknown input is estimated at each step. This fact can
be an advantage in an on-line process.

For unsteady problems, the FSM developed by Beck et al. [6]
has been widely used, combined with any of those above men-
tioned whole domain methods. The combination of the Tikhonov
regularization method [7] and the sequential FSM has already been
implemented for two-dimensional and non-linear IHCPs [10]. In
addition, it must be mentioned that the combination of the gradi-
ent method [8] and the sequential FSM has also been investigated
for one and two-dimensional IHCPs. Dowding and Beck [11] ad-
dressed a sequential gradient method for two-dimensional IHCPs
with and without function specification, additionally using the
conventional regularization method.

Another effective technique to solve ill-posed problems is based
on the singular value decomposition (SVD) of an ill-conditioned
matrix [12] and posterior truncation of singular values. The trun-
cated SVD method has been applied to solve inverse problem in
steady [13,14] and transient heat conduction [15,16]. The stabi-
lizing effect of this method is based on the elimination of the
smallest singular values of the sensitivity matrix (and the corre-
sponding left and right singular vectors), so that p largest singular
values are only considered. This procedure implies a reduction of
the matrix rank. The new rank of the truncated sensitivity ma-
trix is p. This reduced rank approximation reduces the condition
number and the numerical instability. More recently, Shenefelt [17]
presented the data filtering interpretation by the truncated SVD
in IHCP. In all these previous studies, the truncated SVD method
was applied as a whole domain procedure. Recently, the truncated
SVD method has also been applied in a sequential form [18,19].
In similar way to the classical sequential methods, the sequential
algorithm uses only a reduced number of future temperatures in
each step (r). As well as this, the truncated SVD is applied to a
small sensitivity matrix.

Gutiérrez et al. [19] compare the sequential SVD method with
the standard whole domain SVD for one-dimensional and linear
problems. The sequential SVD algorithm presents two tunable hy-
perparameters: the number of future temperature (r) and the rank
of the truncated sensitivity matrix (p). In accordance with the data
filtering interpretation of Shenefelt [17], the principal regulariza-
tion effect is carried out by the reduced rank p. This implies the
elimination of the band-pass filters centred on high frequencies,
which corresponding to random noise. Furthermore, the sequential
SVD algorithm allows controlling the wideband with the number
of future temperature r.

Lagier et al. [18] have presented the sequential SVD method
for solving the general linear multidimensional unsteady inverse
heat conduction problem. This numerical method is based on the
Boundary Element Method formulation.

In this paper, the sequential SVD method is investigated for
the two-dimensional (using Cartesian or axisymmetric cylindrical
coordinates) and non-linear IHCP in irregular-shaped bodies with
temperature-dependent thermal properties. This study is a gener-
alization of previous work of Gutiérrez et al. [19]. The numerical
method is based on the Finite Element Method (FEM) formulation.
The sequential SVD technique is capable of estimating space and
time-varying surface heat flux. The unknown surface condition is
assumed to have abrupt changes at unknown times. In addition,
the sequential form of this method allows the use of a quasi-linear
approximation in the calculations of temperatures and sensitiv-
ity coefficients [6,10]. This fact results in an efficient scheme (the
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Fig. 1. Geometry, coordinates and sensor locations of the sample problem.

computer time is substantially reduced) because iteration is not
required for non-linear problems.

The stability and accuracy of the method are demonstrated by
several numerical examples based on strict standard tests, and the
results are compared to an existing regularization method such as
the well known FSM. In this comparison, the simplest model of
function specification is considered (a constant heat flux functional
form) with no additional regularization procedure. In this case, nu-
merically simulated data have been used. In this study the param-
eters considered have been the following: shape of the input (four
tests with different shapes are used), noise level of measurement,
size of time step and temperature-dependent thermal properties.
The thermo-physical properties are assumed as constant values for
the linear problem. In the non-linear problem, a linear dependence
of thermal conductivity (with the temperature) has been chosen,
while the remaining properties are assumed as constant values for
simplicity and without loss of generality.

The contents of this paper are briefly outlined below. In Sec-
tion 2, the mathematical description of the problem is presented.
In Section 3, the regularization procedure used to solve the inverse
problem is developed. Numerical examples are discussed in Sec-
tion 4. Finally, the conclusions are exposed in Section 5.

2. Problem description

Without loss of generality and in order to illustrate the method,
the following transient heat conduction problem is considered. The
sample body is an axisymmetric cylinder wall with temperature-
dependent thermal properties. The spatial domain is Ω and the
symbols Γ1 and Γ2 represent the domain boundaries. Fig. 1
shows a schema of the geometry and the coordinates for a two-
dimensional axisymmetric cylindrical body considered with its
boundary conditions. Note that Γ1 is the boundary AC (see Fig. 1)
and Γ2 is the convective boundary ABDC (AB, BD and DC).

The mathematical formulation of the corresponding problem is
stated as follows:

1
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kr
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∂r

)
+ ∂
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, (r, z) ∈ Ω, 0 � t � tM (1a)

−k
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∂T

∂z
nz = q(r, z, t), (r, z) ∈ Γ1, 0 � t � tM (1b)

−k
∂T

∂r
nr − k

∂T

∂z
nz = h

[
T∞ − T (r, z, t)

]
(r, z) ∈ Γ2, 0 � t � tM (1c)

T (r, z,0) = T0(r, z), (r, z) ∈ Ω, t = 0 (1d)
where Eq. (1a) is the two-dimensional heat conduction equation
for axisymmetric cylindrical coordinates (r, z). The boundary con-
dition in Eq. (1c) represents a convective boundary condition (third
kind), but even boundary conditions of the first and second kinds
can be considered in the boundary Γ2. The geometry, thermal
properties (k,ρ, c), boundary conditions (h, T∞), and the initial
condition (T0) are assumed to be known completely. In the di-
rect problem, the heat flux q(r, z, t) in Eq. (1b) represents a flux
imposed in the boundary Γ1. In the inverse problem, q(r, z, t) will
be the unknown function to be estimated. This flux can be an ar-
bitrary function. The symbols nr and nz are r- and z-components
of the normal unitary vector, n, to the boundary surface which is
pointing towards inside of the body. Hence, the heat flux, q(r, z, t),
penetrating in the solid through a surface is positive.

In the numerical simulation of this study, four different func-
tions (test cases) will be considered. The response of the direct
problem, T (r, z, t), will be calculated numerically using FEM for-
mulation. We are interested in the response at sensors locations,
because in the commonly accepted definition of the IHCP, the
reconstruction of the unknown function, q(r, z, t) is carried out
from discrete temperature measurements at these internal posi-
tions. Let measurements, Y ji = Y (r j, z j, ti), be taken at sensor j
( j = 1,2, . . . , J ) for times ti , where i = 1,2, . . . , M . As the mea-
sured temperatures Y ji are affected by errors, they are simulated
using the numerical values of the temperature calculated in the
direct problem, T ji = T (r j, z j, ti), for times ti = i�t (the time in-
tervals of the measurements) at each sensor j. Then, random errors
ε ji are added according to: Y ji = T ji + ε ji , where ε ji = Cu ji . Ran-
dom numbers u ji have been obtained using a random generator
according to a normal (or Gaussian) distribution with zero mean,
uncorrelated and unit standard deviation. The constant C is cho-
sen, so that C = σ , where σ is the standard deviation of measured
temperatures.

3. Inverse problem

In the inverse problem solution method, firstly the domain is
divided into finite elements, and secondly the discretization, over
time and space, of the unknown surface heat flux, q(r, z, t) in
Eq. (1b), must be done. These approximations are carried out in
the same way as Osman et al. [10] have made, and they are sum-
marized below.

If a surface coordinate “s” is introduced, the surface heat flux
in Eq. (1b) can be expressed as:

q(r, z, t) = q(s, t), (r, z) ∈ Γ1 (2)

where s is the surface coordinate along boundary Γ1.
Boundary Γ1 is divided into sub-intervals and the spatial ap-

proximation of q(s, t) along this boundary, at a fixed time in-
stant, is made using P interpolating functions, Φk(s), with k =
1,2, . . . , P , which approximate the function q(s, t) over each sur-
face segment in Γ1 using the values of the heat flux at the P
surface parameter nodes,

q(s, t) =
P∑

k=1

Φk(s)qk(t) (3)

where P is the total number of spatial parameter nodes, and
Φk(s) are the basis functions for interpolating. The function qk(t) =
q(sk, t) in Eq. (3) represents the heat flux history at the kth param-
eter node. In this way, the selected parameters are interpolated at
all the surface nodes.

Now, the approximation of the temporal distribution of the sur-
face heat flux is carried out by discretizing the continuous function
qk(t) in Eq. (3). The given time interval, 0 � t � tM , is usually di-
vided into uniform sub-intervals, each of size �t = tM/M , with
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ti = i�t , where i = 1,2, . . . , M . The function qk(t) at the spatial lo-
cation sk is approximated by a piecewise constant function on time
by

qk(t) = (qk1,qk2, . . . ,qki, . . . ,qkM) (4)

where qki = qk(ti ) is the value of the arbitrary surface heat flux
function at the kth parameter location and at time ti , which is
centred at the middle of the time step (ti−1/2).

Therefore, the global approximation of the surface heat flux at
time ti is given by

q(s, ti) =
P∑

k=1

Φk(s)qki (5)

Flux components qki are the unknown surface heat flux parameters
to be calculated. These parameters qki are estimated simultane-
ously in space, index k, and sequentially in time, index i. The
discretization of the surface heat flux, q(s, t), over time and space,
involves the following parameters:

q = (q1,q2, . . . ,qk, . . . ,qP )T (6a)

with

qk = (qk1,qk2, . . . ,qki, . . . ,qkM)T (6b)

The aim of the inverse problem is to estimate the components qki ,
with k = 1,2, . . . , P and i = 1,2, . . . , M using, as additional in-
formation, the discrete temperature measurements Y ji , with j =
1,2, . . . , J and i = 1,2, . . . , M , which are taken at interior posi-
tions of the solid.

3.1. Standard form for the 2D linear IHCP

The purpose of this subsection is to obtain the well-known
temperature equations called standard form for the linear IHCP [6]
when two-dimensional problems are considered. The discussion
in this subsection is confined to the linear IHCP but nearly the
same approach can be used for the quasi-linear analysis which is
discussed in Subsection 3.3. The analysis can be performed using
either algebraic or matrix notation but the latter analysis is pre-
ferred because it is more compact and general. The structure of
vectors and matrices will be detailed later in this paper.

In a linear problem, a linear dependency exists between the
input, in this case q(r, z, t), and the response, T (r, z, t), at sensors
locations. This dependency can be expressed analytically by the
Duhamel integral in a discrete form:

T jM = T j0 +
P∑

k=1

M∑
i=1

qki�φkj(M−i) (7)

where T jM = T (r j, z j, tM) is the value of the temperature response
at the jth sensor location and at time tM , T j0 is the initial con-
dition at the jth sensor location, φkji = φk(r j, z j, ti) represents
the temperature response at the jth sensor location, at time ti ,
for a unit step change of the surface heat flux kth parameter,
and hence �φkji = φkj(i+1) − φkji represents the temperature re-
sponse to a unit pulse on the surface heat flux kth parameter,
at the jth sensor location and at time ti . Consequently, �φkji
represents the pulse sensitivity coefficient measured at location
(r j, z j) and at time ti with respect to the surface heat flux kth
parameter. Eq. (7) represents the convolution between the set
of parameters (qk1,qk2, . . . ,qkM ) and the sensitivity coefficients
(�φkj(M−1),�φkj(M−2), . . . ,�φkj0) with k = 1,2, . . . , P .

Considering Eq. (7) for M = 1,2, . . . , it is possible to obtain the
following matrix equation:

T = [X]q + T0 (8)
where T is the vector of temperature response at each one of the
sensors, q is the heat flux vector given by Eqs. (6a), (6b), [X] is the
sensitivity matrix and T0 is the temperature vector corresponding
to the initial condition. The T temperature vector can be expressed
as:

T = (T1,T2, . . . ,T j, . . . ,T J )
T (9a)

with

T j = (T j1, T j2, . . . , T ji, . . . , T jM)T (9b)

the [X] sensitivity matrix is:

[X] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 · · · X1k · · · X1P

X21 X22 · · · X2k · · · X2P
.
.
.

.

.

.
. . .

.

.

. · · · .
.
.

X j1 X j2 · · · X jk · · · X j P
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

X J1 X J2 · · · X Jk · · · X J P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9c)

with each [X jk] sub-matrix expressed as:

[X jk] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�φkj0 0 · · · 0 · · · 0
�φkj1 �φkj0 · · · 0 · · · 0

.

.

.
.
.
.

. . .
.
.
. · · · .

.

.

�φkj(i−1) �φkj(i−2) · · · �φkj0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

�φkj(M−1) �φkj(M−2) · · · �φkj(M−i) · · · �φkj0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9d)

and the initial temperature vector T0 is:

T0 = (T10,T20, . . . ,T j0, . . . ,T J0)
T (9e)

where T j0 sub-vector ((M × 1) in dimension) contains the initial
temperature T j0 at the jth sensor location

T j0 = T j0(1,1, . . . ,1, . . . ,1)T (9f)

If the time history covers a long period of time, the [X] matrix
and the corresponding vectors can be of a considerable dimen-
sion. In Eq. (9d), [X jk] is a square matrix (M × M). This matrix
is called the pulse sensitivity coefficient matrix for qk . Its structure
is lower triangular with �φkj0’s along the main diagonal, �φkj1’s
along the diagonal just below the main one, and so on. Therefore,
in Eq. (9c), the [X] matrix is ( J × M)× (P × M) in dimensions. Ad-
ditionally, T, T0 and q vectors are ( J × M), ( J × M) and (P × M)
in dimensions respectively. Note that if the number of sensors ( J )
is considered equal to the number of parameters (P ) to estimate
(components of the surface heat flux), the [X] matrix, in Eq. (8), is
also a square matrix, and T and q vectors are equal in dimensions.
Then, the first attempt in order to solve the inverse problem can
be the identification of measured temperatures Y ji with the calcu-
lated temperatures T ji , expressed by Eq. (8), so that the unknown
vector q can be obtained from:

q = [X]−1(Y − T0) (10)

We note that diagonal coefficients of [X jk], in Eq. (9d), are equal to
�φkj0. This sensitivity coefficient represents the response (at the
jth sensor location) to a unitary pulse on the surface heat flux
kth component (with a wideness of one time step), just when
the pulse has finished. If the time step is sufficiently small, this
response can be several orders of magnitude lower than others
sensitivity values. This justifies (from a physical point of view) that
[X] is an ill-conditioned matrix. On the other hand, as Y ji is af-
fected by measurements errors, the estimation of q by Eq. (10)
will be unstable.
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In the sequential IHCP methods based on a march ahead in
time, the heat flux components, qk1,qk2, . . . ,qk(m−1) , of each qk
vector, are considered previously estimated and they are denoted
q̂k1, q̂k2, . . . , q̂k(m−1) . Estimates of the components qkm for k =
1,2, . . . , P , corresponding to the m-time step (located in the time
interval between tm−1 and tm) are needed. In order to obtain the
sequential algorithm SVD, Eq. (8) is considered and it is extended
to r future time steps from the last estimated component (com-
ponent m − 1). In a partitioned form, the matrix equation can be
written as:⎡
⎢⎢⎢⎢⎢⎣

T1 past
T1 fut

.

.

.

T J past
T J fut

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

X11 past 0 · · · X1P past 0
H11 X11 fut · · · H1P X1P fut
.
.
.

.

.

.
. . .

.

.

.
.
.
.

X J1 past 0 · · · X J P past 0
H J1 X J1 fut · · · H J P X J P fut

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q̂1 past
q1 fut

.

.

.

q̂P past
qP fut

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

T10 past
T10 fut

.

.

.

T J0 past
T J0 fut

⎤
⎥⎥⎥⎥⎥⎦ (11)

where the vectors are:

T j past = (T j1, T j2, . . . , T j(m−1))
T (12a)

T j fut = (T jm, T j(m+1), . . . , T j(m+i−1), . . . , T j(m+r−1))
T (12b)

q̂k past = (q̂k1, q̂k2, . . . , q̂k(m−1))
T (12c)

qk fut = (qkm,qk(m+1), . . . ,qk(m+i−1), . . . ,qk(m+r−1))
T (12d)

and the sub-matrices, in Eq. (11), are:

[X jk past] =

⎡
⎢⎢⎢⎣

�φkj0 0 · · · 0
�φkj1 �φkj0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

�φkj(m−2) �φkj(m−3) · · · �φkj0

⎤
⎥⎥⎥⎦ (12e)

[H jk] =

⎡
⎢⎢⎢⎣

�φkj(m−1) �φkj(m−2) · · · �φkj1
�φkjm �φkj(m−1) · · · �φkj2

.

.

.
.
.
.

. . .
.
.
.

�φkj(m+r−2) �φkj(m+r−3) · · · �φkjr

⎤
⎥⎥⎥⎦ (12f)

[X jk fut] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�φkj0 0 · · · 0 · · · 0
�φkj1 �φkj0 · · · 0 · · · 0

.

.

.
.
.
.

. . .
.
.
. · · · .

.

.

�φkj(i−1) �φkj(i−2) · · · �φkj0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

�φkj(r−1) �φkj(r−2) · · · �φkj(r−i) · · · �φkj0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12g)

It should be noted that T j0 past and T j0 fut vectors contain the same
information (initial temperature T j0 at the jth sensor location),
nevertheless the dimensions are different. Rearranging the sensitiv-
ity matrix and heat flux vector, in Eq. (11), the future temperatures
can be written as:
⎡
⎢⎣

T1 fut
.
.
.

T J fut

⎤
⎥⎦ =

⎡
⎢⎣

H11 · · · H1P X11 fut · · · X1P fut
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

H J1 · · · H J P X J1 fut · · · X J P fut

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̂1 past
.
.
.

q̂P past
q1 fut

.

.

.

qP fut

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎢⎣

T10 fut
.
.
.

T J0 fut

⎤
⎥⎦ (13)

that is,

Tfut = [H]q̂past + [Xfut]qfut + T0 fut (14)

where the vectors are:

Tfut = (T1 fut,T2 fut, . . . ,T j fut, . . . ,T J fut)
T (15a)

q̂past = (q̂1 past, q̂2 past, . . . , q̂P past)
T (15b)

qfut = (q1 fut,q2 fut, . . . ,qP fut)
T (15c)

and the matrices are:

[H] =

⎡
⎢⎢⎢⎣

H11 H12 · · · H1P

H21 H22 · · · H2P
.
.
.

.

.

.
. . .

.

.

.

H J1 H J2 · · · H J P

⎤
⎥⎥⎥⎦ (15d)

[Xfut] =

⎡
⎢⎢⎢⎣

X11 fut X12 fut · · · X1P fut
X21 fut X22 fut · · · X2P fut

.

.

.
.
.
.

. . .
.
.
.

X J1 fut X J2 fut · · · X J P fut

⎤
⎥⎥⎥⎦ (15e)

In Eq. (14) the previous history is stored in [H] matrix and q̂past
vector. The vectors and matrix related with future temperatures
are Tfut, qfut and [Xfut].

Taking into account Eq. (14), the expression [H]q̂past + T0 fut
can be interpreted as the calculated temperature over tm−1 < t �
tm+r−1, considering that in this time interval the input is held at
zero. This concept is noted as:

[H]q̂past + T0 fut = T|q fut=0 (16)

Finally, Eq. (14) can be written more compactly as:

Tfut = [Xfut]qfut + T|q fut=0 (17)

This matrix equation is known as the standard form for the lin-
ear IHCP [6]. Notice that Eq. (17) can be applied to both one-
dimensional and two-dimensional linear problems. However, the
structure of each vector and each matrix is remarkably more com-
plex for two-dimensional problems.

Again, the first attempt in order to solve the inverse problem,
now in a sequential form, can be the identification of measured
temperatures Y ji with the calculated temperatures T ji , expressed
by Eq. (17), so that, assuming J = P , it is possible to obtain qfut
vector from:

qfut = [Xfut]−1(Yfut − T |q fut=0) (18)

We note that diagonal coefficients of each [X jk fut] lower triangular
sub-matrix, in Eq. (15e), are equal to �φkj0. For the same reasons
exposed above, this means that [Xfut] can be an ill-conditioned
matrix. Consequently, Eq. (18) is not recommended for resolving
the IHCP in a sequential form. Therefore, an adequate stabilization
technique is needed.
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3.2. 2D linear IHCP based on sequential SVD

In a similar way to FSM, the sequential algorithm SVD uses r
future temperatures (measured and calculated). Nevertheless, the
stabilization technique is not based on the temporary specification
of the unknown surface heat flux over r future time steps. For each
qk vector, it is assumed that components: q̂k1, q̂k2, . . . , q̂k(m−1) ,
have been previously estimated (they are noted with “∧”), and
the objective is the estimation of the components qkm for k =
1,2, . . . , P , corresponding to the m-time step.

Now, in order to get a stable algorithm, the singular value de-
composition (SVD) [12] of the small sensitivity matrix, [Xfut], will
be considered, so that this matrix can be expressed as:

[Xfut] = [U][S][V]T (19)

where [U] and [V] are orthogonal matrices which column vectors
are the eigenvectors of [Xfut] · [Xfut]T and [Xfut]T · [Xfut] respec-
tively. These vectors will be noted as ui and vi , and are called
left and right singular vectors of [Xfut]. The diagonal matrix [S] =
diag[λ1, λ2, . . . , λM ] contains the square root of the eigenvalues of
[Xfut] · [Xfut]T . These coefficients (noted as λi) are arranged in de-
creasing magnitude and are called the singular values of [Xfut]. The
factorization given by Eq. (19) can be expressed as an outer prod-
uct expansion [20]:

[Xfut] = [U][S][V]T =
J×r∑
i=1

λiuiv
T
i (20a)

where

vi = (v1i, v2i, . . . , v( J×r)i)
T (20b)

uT
i = (u1i, u2i, . . . , u( J×r)i) (20c)

In this expression, it has been assumed that J = P . Then the
square matrix [Xfut], in Eq. (19), of rank J × r and dimension
( J ×r)×( J ×r), has been decomposed as the sum of J ×r matrices
of rank 1 and dimension ( J × r)× ( J × r). This expansion is known
as Spectral decomposition. The factorization SVD presents important
properties, as well as outstanding interpretations and applications.
One of the most interesting applications, in the ill-posed problems
in order to get a reduced model, is based on reduced rank approx-
imations. If expansion represented by Eq. (20a) is truncated to the
p-first singular values and the corresponding left and right singu-
lar vectors (truncated SVD), the new matrix and the corresponding
factorization (noted by the subscript red) will be expressed as:

[Xred] = [Ured][Sred][Vred]T =
p∑

i=1

λiuiv
T
i , p < J × r (21)

Golub and Van Loan [12] show that [Xred] is the closest matrix
to [Xfut] that has rank p. With an adequate effective rank p, the
approximation of [Xfut] by [Xred] presents a notable advantage in
order to solve an inverse problem. Therefore, the matrix [Xred] will
be considered, and with an adequate p-value, a stable algorithm is
obtained:

q̂fut = [Xred]−1(Yfut − T|q fut=0) (22)

where

[Xred]−1 = [Vred][Sred]−1[Ured]T =
p∑

i=1

1

λi
viu

T
i , p < J × r (23)

According to Eqs. (22), (23), the sequential SVD algorithm presents
two tunable hyperparameters: r and p. For a given p-value, we
can carry out numerical experiments in order to find the corre-
sponding optimum r-value (ropt). This optimum value is obtained
from the minimization of the total error S , given by Eq. (29b). Note
that great p-values require larger optimal r-values. This fact repre-
sents a disadvantage in an on-line process, because the time period
ropt · �t (named as “look ahead” [21]) can be excessively long.

Assuming that SVD can be calculated numerically with an ef-
ficient code [22], it is possible to obtain a very simple algorithm.
For a given p-value, Eq. (22) is reduced to:

q̂fut =
p∑

i=1

vi
1

λi
uT

i (Yfut − T|q fut=0) (24)

where

q̂fut = (q̂1 fut, q̂2 fut, . . . , q̂P fut)
T (25a)

with

q̂k fut = (q̂km, q̂k(m+1), . . . , q̂k(m+r−1))
T (25b)

Taking into account the sequential characteristic of this method,
only the first components q̂km with k = 1,2, . . . , P (and it has been
assumed that J = P ) are retained. This calculus process is repeated
for the next time step. Finally, from Eq. (24), the sequential SVD
algorithm can be expressed more explicitly as:

q̂km =
p∑

i=1

v(k−1)·r+1,i
1

λi

J×r∑
j=1

u ji(Yfut − T|q fut=0) j (26)

3.3. 2D non-linear IHCP based on sequential SVD

The quasi-linear approximation proposed by Beck et al. [6,10],
in order to solve efficiently the IHCP using the FSM, can also be
used for the sequential-in-time procedure, presented above, be-
cause the standard form of equations for linear IHCP, Eq. (17),
is valid for both future temperature methods. This results in an
efficient method (the computer time is substantially reduced) be-
cause iteration is not required for non-linear problems. The quasi-
linearization is not possible to carry out on the whole domain
methods.

In a sequential procedure, it is assumed that the surface heat
flux components, q̂k(m−1) with k = 1,2, . . . , P (and with J = P )
have been previously estimated at time tm−1. In order to estimate
q̂km with k = 1,2, . . . , P (and J = P ) at time tm , the linearization
is introduced by evaluation of the thermal properties at time tm−1,
so that the properties are held constant over a reduced number (r)
of future time steps, (tm, tm+r−1), which are used for the estima-
tion of the surface heat flux components, q̂km with k = 1,2, . . . , P
( J = P ) at time tm . This assumption implies a temporal lineariza-
tion of the non-linear problem.

With the assumption given above, the future temperatures for
i = 1,2, . . . , r, can be expressed in a linear form as:

T j(m+i−1)(qfut) = T j(m+i−1)(q∗
fut)

+
P∑

k=1

i∑
n=1

�φkj(i−n)(qk(m+n−1) − q∗
k(m+n−1)) (27a)

where �φ is the pulse sensitivity coefficient, which is defined as:

�φkj(i−n) = ∂T j(m+i−1)

∂qk(m+n−1)

(27b)

and q∗
fut is an initial heat flux vector, which can be an arbitrary

vector. However, q∗
fut = 0 is a common choice. The corresponding

response vector (natural response) will be noted as T(q∗
fut = 0) =

T|q fut=0. Considering the matrix form of Eq. (27a) the future tem-
peratures can be expressed as:

T(qfut) = Tfut = T|q fut=0 + [Xfut]qfut (28)
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It can be seen that Eq. (28) is equivalent to Eq. (17). This matrix
equation represents the Duhamel integral in a discrete form, which
is extended to r future time steps from the last estimated compo-
nent. The same procedure mentioned in the previous subsection,
can be applied now to Eq. (28), so that after considering the SVD
of the sensitivity matrix [Xfut] (ill-conditioned) and the closest ma-
trix of reduced rank [Xred] (well-conditioned), the same Eq. (24) is
obtained. For that reason, Eq. (24) also can be used to solve non-
linear problems, but it is important to remark that T|q fut=0 and
[Xfut] must be updated in each time interval considered.

The expression T|q fut=0 can be calculated over tm−1 < t �
tm+r−1, solving a temperature direct problem and considering that
in this time interval the input is held at zero. The initial condition
corresponding to this direct problem is the temperature field at
time tm−1, T̂m−1. According to the quasi-linear approximation, the
thermal properties k, ρ and c are evaluated at the temperature at
time tm−1, and they are held constant for the r future time steps.
Consequently, no iteration is required for the calculation of qfut.

Eq. (24) represents the solution of the system of algebraic equa-
tions for the estimation of the unknown parameters. Only the first
components q̂km with k = 1,2, . . . , P (and it has been assumed
that J = P ), corresponding to the first time step, are retained from
the solution given by Eq. (24). Then, time index is increased by one
and the solution process is repeated by marching in time (updat-
ing the thermal properties at each time step) until the last time
step is reached (the last components are estimated).

To use this inverse method, it is necessary to obtain values
of the sensitivity coefficients. For linear problems (temperature-
independent thermal properties) the sensitivity coefficients are the
same for each analysis time interval, therefore, sensitivity coef-
ficients are computed only once (for the first time interval). In
non-linear problems (temperature-dependent thermal properties)
the sensitivity matrix [Xfut] is found with the thermal properties
fixed using the temperature field at the previous time step, tm−1,
but in the next time interval analysis [Xfut] must be updated.

It is well known that the sensitivity coefficients can be found
using the sensitivity equations [10] or a finite difference approx-
imation. In this paper, the sensitivity equation method is used,
because it is typically more accurate and less unstable than the
finite difference method [10,23]. There are P ( J = P ) sensitivity
problems, and each of them is exactly the same as the direct prob-
lem in Eqs. (1a)–(1d) with the following simplifications: the initial
condition in Eq. (1d) is zero, the heat flux q(r, z, t) in Eq. (1b), tak-
ing into account Eq. (5), is replaced by the basis function Φk(s)
with k = 1,2, . . . , P ( J = P ) and the known boundary condition in
Eq. (1c) is homogeneous (T∞ = 0). The numerical computations for
the sensitivity coefficients are also simplified because the matrices
corresponding to the finite element formulation (the conductivity
matrix and the capacitance matrix) do not change over r future
time steps and they are the same as for the temperature problem.

4. Numerical results

In an IHCP there are two sources of error in the estimation.
The first source is the unavoidable bias deviation (or deterministic
error). The second source of error is the variance due to the ampli-
fication of measurement errors (stochastic error). The global effect
of deterministic and stochastic errors is considered in the mean
squared error or total error when only one parameter is estimated,
Sk with k = 1,2, . . . , P . Sk is defined by:

Sk =
[

1

N − 1

N∑
i=1

(q̂ki − qki)
2

]1/2

, 1 � k � P (29a)

where N is the total number of estimated values corresponding to
the kth parameter, q̂ki is the estimated kth component at ti and qki
is the true value.
In addition, as the inverse problem usually involves the estima-
tion of P parameters (P > 1), in this study an overall estimate, S ,
for the error has been defined as:

S =
[

1

P

P∑
k=1

S2
k

]1/2

(29b)

The overall estimate, S , considers the total error, Sk , of each pa-
rameter estimated, k = 1,2, . . . , P .

The value of the estimate, S , defined in Eq. (29b), is used to de-
cide when the best estimation of the surface heat flux has been
reached, so that the optimization criterion is the minimization
of S . The value of Sk provides information about the accuracy of
the estimation reached in an only point in the space (space posi-
tion which corresponds to the location of the kth parameter). By
contrast, S provides information of the estimation on the complete
surface, since this one considers all the points of the surface (set
of points in which the parameters must be estimated). Therefore,
the idea is not to try the minimization of the total error of each
parameter, but to minimize the total error of the estimations of all
the parameters simultaneously. This criterion will be very useful in
this comparative study.

It must be pointed out that sequential algorithms (FSM and
SVD) use r measurements before heating starts (t < 0). In accor-
dance with Beck et al. [6], this is performed in order to minimize
the effect of the anomalous calculation during the first few steps.

The sample problem is illustrated in Fig. 1. An axisymmet-
ric cylinder wall ABC D (R1 = 0.5 m, R2 = 1.5 m, AC = B D =
1 m, AB = C D = R1 − R2 = 1 m) is composed of a material
with the following thermal properties: the volumetric heat ca-
pacity has been considered constant (c = 1 J kg−1 ◦C−1, ρ =
1 kg m−3) for the linear problem, as well as the thermal con-
ductivity (k = 1 W m−1 ◦C−1), whereas for the non-linear problem
it has been considered the following temperature dependence:
k = 1 + T W m−1 ◦C−1. This wall is subjected to a heat flux im-
posed on side AC , and three convective boundary conditions rela-
tive to a fluid temperature T∞ = 0 ◦C (h = 1 W m−2 ◦C−1 on AB ,
on B D and on C D). Temperature measurements are taken from
two sensors located at a distance of 0.5 m from AC as is shown in
Fig. 1. The two unknown heat flux components on AC are placed
at the corners. The goal is to estimate the heat flux components
on AC using the temperature measurements.

Firstly, several direct problems have to be solved. In order to
obtain the simulate temperature data using the FEM formulation,
the domain is modelled with a regular mesh (648 triangular ele-
ments and 361 nodes). The same spatial mesh is used in order to
calculate the sensitivity coefficients. We notice that in the inverse
analysis, the boundary corresponding to unknown heat flux (AC in
Fig. 1) is discretized with only two degrees of freedom. By contrast,
the same boundary contributes with 19 nodes to the mesh used
on the direct problems. On the other hand, direct problems are
solved considering a high temporal resolution. The time-stepping
considered is based on backward difference. This scheme is pure
implicit and unconditionally stable. It is evident that time-step
size required by the inverse algorithm is significantly larger than
the one used in direct problems. If �tD and �t I represent the
time step used in the direct and inverse problems, the values of
the ratio �t I/�tD were the following: 100, 50 and 25. The great
differences between the discretization used in direct and inverse
problems, avoid the problem named as “inverse crime”. The ex-
pression “inverse crime” is used to denote the act of employing
the same model to generate, as well as to invert, synthetic data.

For each inverse method we have considered: four shapes of
the input as shown in Fig. 2, with two different levels of error in
temperature measurements and three sizes of time step in each
case (0.1 s, 0.05 s and 0.025 s). In addition, linear and non-linear
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Fig. 2. Shapes of the heat flux considered in the sample problem.
problems are studied. This implies a total of 48 cases. Tables 1
and 2 summarize the results corresponding to the best estimation
obtained by FSM and sequential SVD (noted as SSVD) in all cases
considered. Each case taken into account appears in a row, while
the following information is represented in columns: test used,
level of error in temperature measurements (σ ), size of the time
step (�t), method used (FSM or SSVD), optimum p-value (in SSVD
only), optimum r-value, overall estimate of error (S) and number
case.

It can be appreciated that two levels of measurement noises,
σ = 0.001 ◦C and σ = 0.005 ◦C, have been considered for the rect-
angular tests, which correspond to Figs. 2(a) and 2(c). Taking as
reference the maximum increase of temperature (0.157 ◦C) at lo-
cation sensor for the linear problem, and considering (around the
exact temperatures) an error range between ±2.576σ (or 99% con-
fidence interval), these noise levels (low and high) correspond to
error percentages of 1.64% and 8.20% respectively for the linear
problem. In the same way, the levels of measurement noises con-
sidered for the triangular tests, which correspond to Figs. 2(b)
and 2(d), have been σ = 0.001 ◦C and σ = 0.002 ◦C. These noise
levels correspond to error percentages of 5.05% and 10.10% respec-
tively.

Firstly, the linear problem will be considered, and secondly,
the non-linear problem. In Table 1, the results obtained in all
cases considered for the linear problem are summarized. Compar-
ing the overall error estimates (S), the results obtained by the two
sequential procedures are very similar. The SSVD algorithm pro-
vides slightly more accurate results in most cases considered in
this study (24 comparisons altogether), except in three of them
(comparison of cases 31–32, 37–38 and 43–44 in Table 1). Con-
sidering the tests represented in Figs. 2(a) and 2(b), p = 1 has
been the optimum p-value (reduced rank) found for the SSVD
method. The SSVD algorithm is slightly superior to the FSM in
all these cases (12 comparisons altogether, cases 1–24 in Table 1).
Note that the optimum r-value (number of future temperatures)
is similar in both sequential methods, but in SSVD algorithm it is
always smaller or equal to FSM, except only in one case (compar-
ison of cases 19–20 in Table 1) that corresponds to test showed
in Fig. 2(b): high level of noise in temperature measurements
(σ = 0.002 ◦C), and low temporal resolution (�t = 0.1 s). For this
reason (relatively large time step), the best estimation requires a
small number of future temperatures: r = 2 in the FSM and r = 3
in the SSVD method. This results contrast with the previous stud-
ies about the one-dimensional problem [19] where the optimum
r-value required by FSM and SSVD is the same in all cases con-
sidered. Taking into account the tests represented in Figs. 2(c)
and 2(d), the optimum reduced rank is p = 3 for the SSVD method
in these cases (12 comparisons altogether, cases 25–48 in Table 1).
Now, comparing the tabulated results, the SSVD algorithm provides
slightly more accurate results than the FSM in all cases considered,
except in the three mentioned above (comparison of cases 31–32,
37–38 and 43–44 in Table 1), which always correspond to a low
temporal resolution, and hence, to a low optimum r-value. How-
ever, the optimum r-value in SSVD algorithm is always greater or
equal to the one in FSM.

The estimated heat flux computed using FSM and SSVD is
shown in Fig. 3 as an example for the linear problem. This ex-
ample (comparisons of cases 15–16 and 21–22 in Table 1) con-
siders the effect of noise level in measurement errors through
a triangular test (Fig. 2(b)). Two levels (low and high) of noise
measurements σ = 0.001 ◦C and σ = 0.002 ◦C are considered. In
both comparisons, the time step has been �t = 0.05 s. Due to its
size, twenty measurements (N = 20) are included in the interval
τ = 1 s. Figs. 3(a) and 3(b) compare the results corresponding to
the best estimation obtained by FSM and SSVD. If we had used er-
rorless data (by setting σ = 0), it might be thought that inverse
algorithm does not need any regularization, nevertheless the ex-
act data are real numbers and they are limited by the number of
significant digits of the computer. For this reason a weak regular-
ization provides the optimal estimation in the most of cases. For
example, if we consider errorless data, the same triangular test and
the same time step (�t = 0.05 s), the best estimation using FSM is
obtained for r = 2 and the overall estimate of error is S = 0.0036.
Notice that if the regularization is not considered (r = 1), the es-
timation is significantly worse (S = 6.6309). The best estimation
using SSVD and errorless data is obtained for p = 1 and r = 2. The
overall error is S = 0.0104. As it can be seen in Table 1, the es-
timations using errorless data are significantly superior to those
obtained using data affected by errors.

Another example (comparisons of cases 25–26 and 29–30 in
Table 1) that takes into account the effect of the time step size
through a rectangular test (Fig. 2(c)) has been considered. The
noise level has been σ = 0.001 ◦C. The graphical representation
corresponding to a case like this is shown in Fig. 4, which repre-
sents the best estimation obtained by both methods for the linear
problem. Two sizes of the time step �t = 0.1 s and �t = 0.025 s
are considered. Fig. 4(a) refers to a relatively large time step �t =
0.1 s. Because of its size, only N = 10 measurements are included.
Fig. 4(b) refers to a �t = 0.025 s, so that N = 40.
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Table 1
Comparison of error estimations for the linear IHCP in different cases

Test σ (◦C) �t (s) Method popt ropt S (W m−2) Case

Fig. 2(a) 0.001 0.1 FSM – 1 0.0986 1
SSVD 1 1 0.0511 2

0.05 FSM – 2 0.1314 3
SSVD 1 2 0.1224 4

0.025 FSM – 3 0.1344 5
SSVD 1 3 0.1206 6

0.005 0.1 FSM – 2 0.2160 7
SSVD 1 2 0.1902 8

0.05 FSM – 5 0.2178 9
SSVD 1 3 0.1766 10

0.025 FSM – 6 0.2110 11
SSVD 1 4 0.1660 12

Fig. 2(b) 0.001 0.1 FSM – 2 0.0347 13
SSVD 1 2 0.0316 14

0.05 FSM – 4 0.0337 15
SSVD 1 3 0.0237 16

0.025 FSM – 6 0.0300 17
SSVD 1 6 0.0215 18

0.002 0.1 FSM – 2 0.0632 19
SSVD 1 3 0.0429 20

0.05 FSM – 5 0.0465 21
SSVD 1 3 0.0343 22

0.025 FSM – 9 0.0472 23
SSV 1 7 0.0258 24

Fig. 2(c) 0.001 0.1 FSM – 1 0.1009 25
SSVD 3 2 0.0694 26

0.05 FSM – 2 0.1148 27
SSVD 3 3 0.1011 28

0.025 FSM – 4 0.1138 29
SSVD 3 7 0.0982 30

0.005 0.1 FSM – 2 0.1883 31
SSVD 3 3 0.2258 32

0.05 FSM – 5 0.1771 33
SSVD 3 6 0.1603 34

0.025 FSM – 7 0.1788 35
SSVD 3 10 0.1597 36

Fig. 2(d) 0.001 0.1 FSM – 2 0.0343 37
SSVD 3 3 0.0469 38

0.05 FSM – 4 0.0313 39
SSVD 3 6 0.0298 40

0.025 FSM – 7 0.0281 41
SSVD 3 9 0.0257 42

0.002 0.1 FSM – 2 0.0630 43
SSVD 3 3 0.0824 44

0.05 FSM – 5 0.0462 45
SSVD 3 6 0.0426 46

0.025 FSM – 9 0.0440 47
SSVD 3 11 0.0421 48

Later, a graphical representation of the singular values of the
sensitivity matrix [Xfut] (Eq. (15e)) and the corresponding Con-
dition Number (CN, ratio between largest and smallest singular
values) are considered. They give a good insight about the degree
of ill-posedness of the inverse problem. Furthermore, a clear jus-
tification of the optimum values of hyperparameters p and r of
Eq. (24) is obtained. The approximation of [Xfut] (of rank ( J × r)
and dimension ( J × r) × ( J × r)) by [Xred] (of rank p and dimen-
sion ( J × r) × ( J × r)) presents a notable advantage in order to
solve an inverse problem. The elimination of ( J × r) − p smallest
terms of Eq. (20a) has a negligible effect on a direct problem, but it
can be strictly necessary in an inverse problem, in order to reduce
the CN and the numerical instability.

The following cases have been selected: 16, 22, 26 and 30 of
Table 1. The corresponding representation is showed in Fig. 5. In
cases 16 and 22, the sensitivity matrix [Xfut] is the same, because
in both cases the time step, the optimum values of r and p are
the same. Nevertheless, the estimations are different because noise
level (σ ) is higher in case 22. Fig. 5(a) shows the singular val-
ues of the sensitivity matrix for these cases. The corresponding
Fig. 3. Estimated heat flux in the linear problem for �t = 0.05 s (a) for σ = 0.001 ◦C
(cases 15, 16 in Table 1) and (b) for σ = 0.002 ◦C (cases 21, 22 in Table 1).

CN = 24.86. In all cases, the objective is to estimate two parame-
ters ( J = 2), but the triangular test corresponding to cases 16 and
22 uses identical parameters (q1 = q2). Consequently, the informa-
tion provided by each sensor (symmetrically located) is the same.
For this reason popt = 1. Notice that in this case, the maximum
simplification of the system provides the optimal estimation and
the condition number of matrix [Xred] is CN = 1.

Figs. 5(b) and 5(c) correspond to singular values of the sensi-
tivity matrix of cases 26 and 30, respectively. In both cases, the
rectangular test uses different parameters (q1 �= q2), and the in-
formation provided by each sensor is equally different. In case 26,
the size of time step is relatively large (�t = 0.1 s). This implies
that the singular values are also relatively large. However, CN is
not too large (CN = 5.62). For this reason, the optimum r-value
requires only two future temperatures and the dimension of sen-
sitivity matrix is 4 × 4. The best estimation is obtained for p = 3,
and the condition number of matrix [Xred] is CN = 3.47. This im-
plies that it is only necessary to remove the last singular value
(and the corresponding singular vectors).

Next, the process of finding the optimal parameters is consid-
ered in this example. Firstly, in order to analyze the maximum
simplification of the system, a reduced rank p = 1 is considered.
This simplification involves only one degree of freedom, and only
one parameter can be estimated. The only one parameter esti-
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Fig. 4. Estimated heat flux in the linear problem for σ = 0.001 ◦C (a) for �t = 0.1 s
(cases 25, 26 in Table 1) and (b) for �t = 0.025 s (cases 29, 30 in Table 1).

mated oscillates around the average value of q1 and q2. For ex-
ample, if we consider p = 1, the overall error estimate for r = 1
and r = 2 is S = 0.2442 and S = 0.2549, respectively. Obviously,
the condition number of matrix [Xred] is CN = 1 in both estima-
tions. Next, we consider p = 2. The overall error estimate for r = 1
and r = 2 is S = 0.1009 and S = 0.2177 respectively, and the cor-
responding condition number of matrix [Xred] is CN = 2.4265 and
CN = 3.3311. If we consider p = 3, it is not possible to use r = 1
with two parameters ( J = 2). This is because the dimension of
[Xfut] is 2 × 2. Using r = 2 and r = 3, the overall error estimate
and the condition number of the reduced matrix are S = 0.0694,
S = 0.1143, CN = 3.4690 and CN = 4.2625, respectively. Finally, if
we consider p = 4, the overall error estimate and the condition
number of the reduced matrix for r = 2 and r = 3 are S = 0.0762
and S = 0.0860, CN = 5.6500 and CN = 5.7797, respectively. No-
tice that for a given value of p, the optimal r-value corresponds
with the minor CN. Consequently, for the test corresponding to
solid line of Fig. 2(c), with a time step �t = 0.1 s and a noise
level σ = 0.001 ◦C, the best estimation corresponds to popt = 3
and ropt = 2. Fig. 5(b) shows that second and third singular val-
ues of [Xfut] are equal, consequently if r = 2, it is not surprising
that popt = 3.

Furthermore, it is clear that the degree of ill-posedness of case
26 is low. By contrast, case 30 is an example of severe ill-posed
Fig. 5. Graphical representation of the singular values and CN of the sensitivity ma-
trix corresponding to cases 16, 22, 26 and 30 of Table 1.

problem. As expected, this case requires much more information
of future temperatures, ropt = 7 and the dimension of sensitivity
matrix is 14 × 14. Fig. 5(c) shows singular values. As the small-
est singular value tends to zero, CN tends to infinity. This is be-
cause in this case, the size of time step (�t = 0.025 s) is four
times smaller than in case 26. Again, the best estimation is ob-
tained for p = 3, and the condition number of matrix [Xred] is
CN = 3.05. Notice that, in all cases of Table 1 corresponding to
tests using two different parameters, the optimum p-value is equal
to three.

In all cases considered, the two sensors are symmetrically lo-
cated. In order to get the greatest possible degree of independence
between the two sensors, they are located to the greatest possible
distance between them (see Fig. 1). Also notice that both sensors
are located at the same distance of the heated surface. If a sensor
is placed at a greater distance than the rest, more remote sensors
do not add significant information [6].

Following, the non-linear problem is analyzed. Similar conclu-
sions are obtained for the non-linear problem. Table 2 summarizes
the results obtained in all the cases considered. Comparing the
overall error estimates (S), the results obtained by the two sequen-
tial procedures are similar. The SSVD algorithm provides slightly
more accurate results in most cases, except in four of them (com-
parison of cases 31–32, 33–34, 37–38 and 43–44 in Table 2). Taking
into account the tests represented in Figs. 2(a) and 2(b), p = 1
has been the optimum p-value found for the SSVD method. The
SSVD algorithm is slightly superior to the FSM in all these cases
(12 comparisons altogether, cases 1–24 in Table 2). In addition,
the optimum r-value in SSVD algorithm is also always smaller or
equal to that in FSM, except in one case (comparison of cases 19–
20 in Table 2) that corresponds to the test showed in Fig. 2(b):
high level of noise in temperature measurements (σ = 0.002 ◦C)
and low temporal resolution (�t = 0.1 s). Viewing the tests repre-
sented in Figs. 2(c) and 2(d), the optimum reduced rank is p = 3
for the SSVD method in these cases (12 comparisons altogether,
cases 25–48 in Table 2). Now, comparing the tabulated results, the
SSVD algorithm provides slightly more accurate results than the
FSM in all cases considered, except in the four mentioned above
(comparison of cases 31–32, 33–34, 37–38 and 43–44 in Table 2),
which correspond to a low temporal resolution. However, the op-
timum r-value in SSVD algorithm is always greater or equal to the
one in FSM.

Graphical representations of the best estimation of heat flux
versus time are plotted in Fig. 6 as an example (comparisons of
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Table 2
Comparison of error estimations for the non-linear IHCP in different cases

Test σ (◦C) �t (s) Method popt ropt S (W m−2) Case

Fig. 2(a) 0.001 0.1 FSM – 1 0.0913 1
SSVD 1 1 0.0368 2

0.05 FSM – 2 0.1318 3
SSVD 1 2 0.1260 4

0.025 FSM – 3 0.1295 5
SSVD 1 2 0.1151 6

0.005 0.1 FSM – 2 0.2209 7
SSVD 1 2 0.1934 8

0.05 FSM – 5 0.2238 9
SSVD 1 3 0.1796 10

0.025 FSM – 5 0.2135 11
SSVD 1 4 0.1608 12

Fig. 2(b) 0.001 0.1 FSM – 2 0.0355 13
SSVD 1 2 0.0327 14

0.05 FSM – 4 0.0346 15
SSVD 1 3 0.0245 16

0.025 FSM – 6 0.0304 17
SSVD 1 6 0.0223 18

0.002 0.1 FSM – 2 0.0636 19
SSVD 1 3 0.0445 20

0.05 FSM – 5 0.0474 21
SSVD 1 3 0.0345 22

0.025 FSM – 9 0.0482 23
SSVD 1 6 0.0263 24

Fig. 2(c) 0.001 0.1 FSM – 1 0.0939 25
SSVD 3 2 0.0681 26

0.05 FSM – 2 0.1146 27
SSVD 3 3 0.0987 28

0.025 FSM – 4 0.1150 29
SSVD 3 7 0.1009 30

0.005 0.1 FSM – 2 0.1893 31
SSVD 3 3 0.2227 32

0.05 FSM – 5 0.1805 33
SSVD 3 5 0.1830 34

0.025 FSM – 7 0.1817 35
SSVD 3 10 0.1633 36

Fig. 2(d) 0.001 0.1 FSM – 2 0.0348 37
SSVD 3 3 0.0470 38

0.05 FSM – 4 0.0318 39
SSVD 3 6 0.0301 40

0.025 FSM – 6 0.0284 41
SSVD 3 9 0.0261 42

0.002 0.1 FSM – 2 0.0631 43
SSVD 3 3 0.0823 44

0.05 FSM – 5 0.0468 45
SSVD 3 6 0.0423 46

0.025 FSM – 9 0.0447 47
SSVD 3 11 0.0425 48

cases 3–4 and 9–10 in Table 2) for the non-linear problem. In these
comparisons, the effect of noise level in measurement errors has
been considered using the test showed in Fig. 2(a). The time step
has been �t = 0.05 s, and this value implies N = 20. Two levels
of noise measurements σ = 0.001 ◦C and σ = 0.005 ◦C have been
considered. The thermal conductivity varies almost 50% during the
simulated experiment, which has a maximum temperature change
of 0.4902 ◦C. Although this variation is not typical of most mate-
rials, it provides a stringent test for the method and linearization
procedure.

Another example is illustrated in Fig. 7 (comparisons of cases
37–38 and 41–42 in Table 2) which considers the effect of the
time step size using the test showed in Fig. 2(d) for the non-linear
problem. Two sizes of the time step �t = 0.1 s and �t = 0.025 s
are considered and, in both cases, the noise level σ = 0.001 ◦C
has been considered. Figs. 7(a) and 7(b) compare the results cor-
responding to the best estimation obtained by FSM and SSVD. In
these cases, the maximum temperature change is 0.1455 ◦C, which
implies a variation of 14.5% of the thermal conductivity.
Fig. 6. Estimated heat flux in the non-linear problem for �t = 0.05 s (a) for σ =
0.001 ◦C (cases 3, 4 in Table 2) and (b) for σ = 0.005 ◦C (cases 9, 10 in Table 2).

It should be noted that in cases where the two parameters
must be equal (q1 = q2, in the tests corresponding to Figs. 2(a)
and 2(b)) the estimations provided by SSVD are biased but they are
quasi-equal (q̂1 ∼= q̂2). By contrast, the corresponding estimations
provided by FSM are biased but they are clearly unequal (q̂1 �= q̂2).
This fact can be seen in Fig. 3 for the linear problem and in Fig. 6
for the non-linear problem. As the temperature measurements are
simulated (in each sensor location) with different random noises
(but with the same σ ), this means that the FSM is more sensitive
to random noise of measurements than the SSVD algorithm. This
justifies the slight superiority of the SSVD method in these cases.

Finally, a comparison between the computing time of FSM and
SSVD algorithms is considered. For this purpose, we have selected
a total of eight cases of Table 2, which correspond to non-linear
inverse problems. The methods were implemented using MAT-
LAB v6.5. The CPU timings were obtained using a Pentium 4 CPU,
2.66 GHz computer with 248 MB of RAM. Table 3 summarizes the
CPU time (in seconds), required by each method. Column “ratio”
contains ratios between CPU time of FSM and CPU time of SSVD,
for each case considered. As can be seen in Table 3, the number of
future temperatures r is the most influential parameter in the CPU
time. Notice that when the optimum r-value is the same in both
methods (cases 3 and 4), the CPU time is very similar. This shows
that the computing time required by the factorization SVD of the
small sensitivity matrix is not significant.
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Fig. 7. Estimated heat flux in the non-linear problem for σ = 0.001 ◦C (a) for �t =
0.1 s (cases 37, 38 in Table 2) and (b) for �t = 0.025 s (cases 41, 42 in Table 2).

5. Summary and conclusions

In this paper, a sequential estimation method is presented
for the solution of a general two-dimensional and non-linear in-
verse heat conduction problem (IHCP). The regularization proce-
dure used for the solution of the IHCP is based on the singular
value decomposition (SVD) technique of the small sensitivity ma-
trix. The inverse algorithm has been implemented in conjunction
with the finite element method (FEM) and can be applied in two-
dimensional planar or cylindrical axisymmetric geometries.

The estimation of an unknown surface heat flux implies the es-
timation of a set of temporal functions corresponding to spatial
nodes on the surface of the body. In general, the number of sur-
face nodes is very large. To reduce the number of unknown heat
flux components to be estimated, a parameterization of the spatial
distribution of the unknown surface heat flux is used. This method
has been accomplished considering that the number of parame-
ters (heat flux components to estimate) is equal to the number of
temperature sensors.

The sequential-in-time SVD algorithm (SSVD) allows a quasi-
linear approximation in the calculations of the temperatures and
sensitivity coefficients (the thermal properties were held constant
during the calculations in each analysis interval). This conceptually
results in an efficient sequential method (substantial reduction of
the computer time), because this procedure eliminates iterations
Table 3
CPU times of FSM and SSVD algorithms for the non-linear IHCP in several different
cases (Table 2)

Test σ (◦C) �t (s) Method CPU time (s) Ratio Case

Fig. 2(a) 0.001 0.05 FSM 524.5 0.97 3
SSVD 539.6 4

0.005 0.05 FSM 1631.9 1.93 9
SSVD 846.9 10

Fig. 2(d) 0.001 0.1 FSM 607.2 0.58 37
SSVD 1039.0 38

0.001 0.025 FSM 1716.0 0.60 41
SSVD 2869.3 42

and reduces the calculations necessary for the reformulation of the
finite element conductivity and capacitance matrices.

The results show that this method does not require a priori in-
formation for the functional form of the unknown quantities to
perform the inverse calculations.

Test cases presented verify the application and the stability of
the method. In addition, the accuracy of the scheme presented
was evaluated by comparison with Function Specification Method
(FSM). This comparative study was carried out using numerically
simulated data, and the parameters considered were the follow-
ing: the shape of the input, the noise level of measurement, the
size of time step and the temperature-dependent thermal prop-
erties. An overall estimate of error has been defined in order to
find the optimal estimation of the surface heat flux in the two-
dimensional IHCP. In general, the FSM and SSVD algorithm give
similar results, and the surface heat flux was reasonably repro-
duced. However, SSVD algorithm provides slightly more accurate
results than the FSM in most cases considered. Moreover, the op-
timum r-value (optimal number of future temperatures) required
by SSVD algorithm is smaller or equal to the one in FSM in many
cases (where only one parameter must be considered on the active
surface). The opposite occurs when several parameters are esti-
mated.
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